

Joint Optimization of Wireless Power Transfer and Collaborative Beamforming for Relay Communications

Shimin Gong, PhD Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences

© Department of Culture and Tourism - Abu Dhabi

Outline

- Introduction
- System Model
- Robust Multi-Relay Transmission
- Numerical Results

Introduction

Introduction

Energy Beamforming and Harvesting

w, Beamforming Vector p_t , HAP Transmit Power s, HAP Transmit Symbol

 $\mathbf{W} = \mathbf{w}\mathbf{w}^{H}$, Beamforming Matrix η , Energy Harvesting Efficiency ρ_n , Power Splitting Ratio

$$\begin{split} & \max_{\rho_n, \mathbf{w}, p_n} r = \log \left(1 + \frac{|(\mathbf{x} \circ \mathbf{y})^H \mathbf{g}|^2}{1 + \mathbf{x}^T \mathrm{D}(\mathbf{g} \circ \mathbf{g}) \mathbf{x}} \right) & \text{URx Throughput} \\ & \text{S.t. } 0 \leq p_n \leq \eta p_t \rho_n \mathbf{f}_n^H \mathbf{W} \mathbf{f}_n & \text{Energy Constraint} \\ & \max_{\mathbb{P} \in \mathcal{P}_{\mathbf{z}}} \mathbb{P}(\phi_m \geq \bar{\phi}) \leq \zeta & \text{Interference Constraint} \\ & \mathbf{Tr}(\mathbf{W}) \leq 1, \mathbf{W} \geq 0, \text{ and } 0 \leq \rho_n \leq 1 \end{split}$$

•, Hadamard Product

 $\mathrm{D}(x),$ Diagonal matrix with the diagonal given by the vector x

$$\mathbf{y} = [y_1, \cdots, y_N]^T$$
, $y_n \triangleq \sqrt{(1 - \rho_n)p_t} \mathbf{f}_n^H \mathbf{w} g_n$

Robust Multi-Relay Transmission

Robust Multi-Relay Transmission

* $s_n = y_n^2$, $\rho_n = \mathbf{f}_n^H \overline{\mathbf{W}} \mathbf{f}_n / \mathbf{f}_n^H \mathbf{W} \mathbf{f}_n$

Numerical Results

Path Loss: $L = 25 + 20 \log_{10}(d)$ Noise Power: -90 dBmBandwidth: 100 kHzEnergy harvesting efficient: $\eta = 0.5$ HAP Transmit Power: $p_t \in [10, 100] \text{ mW}$

Numerical Results

Throughput and Relays' Transmit Power limited by Cellular Users' Interference Constraint

Numerical Results

(a) Received power from HAP

(b) Optimal PS ratio

HAP's beamforming and Relays' PS ratio Optimization

Conclusions

- Pros: Jointly Optimizing Power Transfer and Relay Strategy
 - ✓ We formulate a throughput maximization problem that jointly optimizes the relay strategy (PS ratio and transmit power) and the beamforming of HAP.
 - ✓ A lower bounded SDP reformulation is deduced via monotonic optimization.
 - ✓ Near optimal result is found via Polyblock iteration algorithm according to numerical results.

• Cons:

No direct link considered

Questions & Answers

Thank you !